
Secure Names for Bit-StringsStuart Haber�stuart@surety.com W. Scott Stornetta�scotts@surety.comAbstractThe increasing use of digital documents, and the need torefer to them conveniently and unambiguously, raise an im-portant question: can one \name" a digital document in away that conveniently enables users to �nd it, and at thesame time enables a user in possession of a document tobe sure that it is indeed the one that is referred to by thename? One crucial piece of a complete solution to this prob-lem would be a method that provides a cryptographicallyveri�able label for any bit-string (for example, the content,in a particular format, of the document). This problem hasbecome even more acute with the emergence of the World-Wide Web, where a document (whose only existence maybe on-line) is now typically named by giving its URL, whichis merely a pointer to its virtual location at a particularmoment in time.Using a one-way hash function to call �les by their hashvalues is cryptographically veri�able, but the resulting namesare unwieldy, because of their length and randomness, andare not permanent, since as time goes on the hash functionmay become vulnerable to attack. We introduce proceduresto create names that are short and meaningful, while at thesame time they can persist inde�nitely, independent of thelongevity of any given hash function. This is done by naminga bit-string according to its position in a growing, directedacyclic graph of one-way hash values. We prove the securityof our naming procedures under a reasonable complexity-theoretic cryptographic assumption, and then describe prac-tical uses for these names. An implementation of our namingscheme has been in use since January 1995.1 IntroductionUsers of documents need to refer to those documents in or-der to keep records and in order to communicate with otherusers of the documents. In practice, users name their doc-uments in various ways. A name must be unambiguous, atleast in the context of its use; this requires some connec-tion between the name and the integrity of the document it�Surety Technologies, 1 Main Street, Chatham, N.J. 07928, U.S.A.To appear in the Proceedings of the 4th ACM Conferenceon Computer and Communication Security (ACM, April1997).

names.In the traditional world of paper documents, there areusually reasonable guarantees of this connection. In the caseof printed books and magazines, large print runs that arethe result of single typesetting e�orts make it easier to becon�dent that all copies of a printed document are the same,with a de�nite name printed in a conventional place in thedocument. Making a change to a paper document of anysort, even a small change, typically leaves forensic evidence.A characteristic feature of digital documents, by con-trast, is that they are easy to copy and to alter. The namingproblem is especially troubling if the document exists onlyon-line and never in conventional paper-based form. For on-line documents, a useful naming scheme would allow usersto employ the name to �nd documents, as well as to checkthe integrity of the documents that they �nd. A number ofproposals have been made for such naming systems (see e.g.[SM 94, KW 95, BD+ 95]). These proposals address in dif-ferent ways the problem of how to \resolve" the name intoa location where the document might be found.It is the integrity-checking problem that we address inthis work: how to make sure that the bit-string contentof a given digital document is indeed the same as the bit-string that was intended. Heretofore, two di�erent sorts ofmechanisms have been proposed, digital signatures and one-way hash values.Having the author or publisher of a document compute adigital signature for its bit-string content is a reasonable useof cryptographic tools for this purpose. (See, for example,[R 95, M 94].) However, the ability to validate many digitalsignatures requires the presence of a public-key infrastruc-ture, and the trustworthiness of the validation procedurerelies on the assurance that the signer's private signing keyis indeed secure. For some on-line documents, the infras-tructure and these assurances may not be available. Forlong-lived documents, the security of the binding betweena public key and the person or role of the putative signerbecomes even more problematic. (A general solution to thelatter problem is brie
y described in x5.)Thus it would be useful to have an integrity mechanism,depending on the exact contents of the bit-string in question,that does not depend on the secrecy of a cryptographic key.A natural choice for such a mechanism is the use of a one-way hash function, naming any bit-string by its hash value.(See, for example, [BD+ 95].) However, while this methodis intrinsically veri�able, there are several inconvenient fea-tures:� A desirable feature for the names given to a collection1

of objects is that they be long-lasting, if not perma-nent. (This is one of the functional requirements forURNs [SM 94].) But as technology advances, any par-ticular choice of a presumably one-way function for anaming scheme becomes less secure, so that it must bereplaced (see [Dob 96a, Dob 96b]).1 The unpleasantresult is that the name of a long-lived document willneed to change over time.� Hash values are too long for a human user to rememberor even to communicate easily to another human being.(For example, it is currently recommended that one-way hash functions compute outputs that are at thevery least 128 bits long; this is the output length ofMD5 [Riv 92]. In a 6 bit/character encoding, this is22 alphanumeric characters long.)� The author of a bit-string document has no controlover the form of its name. A one-way hash functionproduces a random-appearing bit-string of the appro-priate length as the hash value of a document. Thus,inconvenient as it may be for the author, there will beno connection between the names of documents thatare related to each other, either in form or in sub-stance.This paper presents a method for naming bit-strings thatretains the veri�able security of hash-based names, whileavoiding the constraints listed above, as well as avoiding theuse of secret cryptographic keys. The method is a variationon the digital time-stamping schemes of [HS 91, BHS 93].In summary, the essence of the new scheme is to keep arepository of hash values that depend on many bit-stringinputs, and to name each bit-string by a concise descriptionof a location in the repository to which it can be securely\linked" by a one-way hashing computation.An implementation of our naming scheme has been run-ning continuously since January 1995 [Sur 95].The rest of this paper is organized as follows. After tech-nical preliminaries in x2, including both a brief discussionof the wider problem of naming digital documents as wellas a formal description of our sub-problem, we present ourscheme and prove its security in x3. Motivated by the explo-sive growth of the Internet, we mention a number of possibleapplications of our scheme in x4. In x5, we describe a methodfor extending the lifetime of our digital names beyond thecryptographically secure lifetime of the hash functions usedto compute them. Finally, we discuss several di�erent sortsof practical implementation in x6.2 Preliminaries2.1 Naming digital documentsA naming system for digital documents should perform (atleast) two functions. It should help the user (1) to �nd thedocument named; and (2) to reassure himself or herself thata given document is indeed the correct one, i.e. that it isindeed a perfect copy of the document that was intended.To enable both these functions, the \name" could includeboth identi�cation information as well as location informa-tion. System design may include procedures for registrationof new documents, for �nding a document given its name,1For example, because of recent attacks on MD5, RSA Laborato-ries recommends that \in the future MD5 should no longer be imple-mented in signature schemes, where a collision-resistant hash functionis required" [Dob 96c].

for updating a document's location information, and for val-idating the integrity of a document. Typically, there is aserver that \resolves" or translates a name into location in-formation, for example into a URL or a list of URLs. Thename may include other information about the document,including such data as title, author, format, price, and ac-cess privileges.A large body of work has been devoted to the di�cultproblem of designing and building a naming system of thissort so that it is usable, useful, and reliable. In [SM 94]a set of functional requirements is described for UniformResource Names (URNs), the names to be assigned by anaming system for resources on the Internet. A numberof researchers have built naming systems, including, amongothers, [KW 95, BD+ 95]. (This is by no means an exhaus-tive list.)In this work we propose a new method for the integrity-checking piece of naming systems for digital documents. Allpreviously proposed systems that included mechanisms forchecking the integrity of the bit-string or bit-strings thatmake up a digital document have used either digital signa-tures or one-way hash functions for this purpose. For certainapplications, these methods have the problems described inx1 above.2.2 Hash functionsThe principal technical tool we use in this paper is thatof a one-way hash function. This is a function compressingdigital documents of arbitrary length to bit-strings of a �xedlength, for which it is computationally infeasible to �nd twodi�erent documents that are mapped by the function to thesame hash value. (Such a pair is called a collision for thehash function.)Practical proposals for one-way hash functions includethose of MD5 [Riv 92], SHA-1 [NIST 94], and RIPEMD-160 [DBP 96]. Though the actual security of these functions(i.e., the precise di�culty of computing collisions for them)is not known, they are now in more or less widespread use.De�nition In a more theoretical vein, Damg�ard de�neda family of collision-free hash functions to be a family fHkgkof sets of functions (indexed by a security parameter k) withthe following properties:1. Each Hk is a set of functions h : f0; 1g� ! f0; 1gk thatare computable in polynomial time.2. Given k, it is easy to choose h 2 Hk at random.3. It is computationally infeasible, given a random choiceof one of these functions, to �nd a collision for thefunction. More precisely, for any polynomial algorithmA, for any positive constant c,Pr[h Hk; (x; x0) A(h) : x 6= x0; h(x) = h(x0)] < k�cfor su�ciently large k.Damg�ard gave a constructive proof of their existence, onthe assumption that there exist families of one-way \claw-free" permutations [Dam 87]. More generally, any \one-waygroup action" is su�cient [BY 90]. Concretely, the construc-tion can be based on the di�culty either of factoring or of thediscrete logarithm function. (As usual, the collision adver-sary A in condition (3) above can be uniform or non-uniform,depending on the precise form of the hypothesis made on thecomputational complexity of the underlying problem.) For2

a variety of reasons, none of the known theoretical construc-tions of collision-free hash functions are practical.In practice, the infeasibility of computing collisions for aparticular hash function depends on the current state of theart, both the current state of algorithmic knowledge aboutattacking the function in question, as well as the compu-tational speed and memory available in the best currentcomputers. As the state of the art advances, it is likelythat a function that was once securely one-way will even-tually cease to be so. For example, Dobbertin's recentlyannounced attacks on MD4 and MD5 have considerably re-duced the community's con�dence in the strength of thesetwo functions [Dob 96a, Dob 96b, Dob 96c]. In x5 below weo�er a solution to the problem this poses for certain practi-cal systems whose real-world security depends on the actualinfeasibility of speci�c computational tasks.We refer the reader to [Pre 93] for a thorough discussionof one-way hash functions.2.3 Theoretical modelWe emphasize that this is a theoretical description of theproblem of veri�ably \naming" bit-strings, which is only apiece of the larger problem of naming digital documents.The setting for our problem is a distributed network ofparties. The network may include a server S as well as arepository R; parties may query the repository, asking for acopy of a particular item it contains.De�nitionA naming scheme for this setting consists of:� a security parameter k;� a polynomial-time naming protocolN , possibly requir-ing interaction with the server S, taking as input abit-string x, and producing as output a name n for x,a certi�cate c, and the addition of items to the repos-itory R; and� a polynomial-time validation protocol V , that takes asinput a triple (x; n; c) and the result of a query to R,and either accepts or rejects its inputs.If (n; c) is the output of an invocation of N on input x, thenV accepts the input (x; n; c) when it is accompanied by acorrect response to a query to R.It is possible, of course, to specify a naming scheme thatdoes not require a server or a repository. In that case, thenaming protocol and the validation protocol may simply bealgorithms that any party in the network may invoke with-out interacting with outside parties.De�nitionA counterfeiting adversary to a naming scheme[N;V; S] is a (possibly probabilistic) algorithm A that per-forms as follows. Given k as input, A produces (polyno-mially many) naming requests x1; x2; : : :; for each xi A isgiven the output of N(xi). The request xi+1 may be com-puted after A has received the response to its ith request.In addition, A may make (polynomially many) queries toR. Finally (after q naming requests, say), A's output is ofthe form (x; n; c). This output is a successful counterfeit ifx 6= xi (for i = 1 : : : q) and V accepts (x; n; c) (after a correctresponse to any queries to R).De�nition A naming scheme is secure if for any poly-nomially bounded counterfeiting adversary A and for anypositive constant c, A's success probability on input k isless than k�c for su�ciently large k.

To illustrate our de�nitions, here is a simple example ofa naming scheme, where the only role of the server is toannounce its random choice of a hash function h 2 Hk. Thenaming procedure is just N(x) = h(x) with no certi�cates,and V accepts (x; n) if n = h(x). It is clear that this de�nesa secure naming scheme as long as Hk is the kth set in afamily of collision-free hash functions.We remark that the roles of S as trusted server and Ras trustworthy repository in these de�nitions are just anartifact of how we have chosen to present and to analyzeour naming schemes, allowing a clean separation betweenissues of the security of the scheme itself and issues of howit might be implemented in practice.2.4 Digital time-stampingOur solution to the naming problem builds on the work of[HS 91] and [BHS 93], whose authors describe several pro-cedures with which users can certify (the bit-string contentsof) their digital documents, computing for any particulardocument a time-stamp certi�cate. Later, any user of thesystem can validate a document-certi�cate pair; that is, heor she can use the certi�cate to verify that the documentexisted, in exactly its current form, at the time asserted inthe certi�cate. It is infeasible to compute an illegitimatedocument-certi�cate pair that will pass the validation pro-cedure.Because we use it directly in our naming scheme, wesummarize here one digital time-stamping scheme. A cen-tral \coordinating server" receives certi�cation requests|essentially, hash values of �les|from users. At regular in-tervals, the server builds a binary tree out of all the requestsreceived during the interval, following Merkle's tree authen-tication technique; the leaves are the requests, and eachinternal node is the hash of the concatenation of its twochildren [Merk 80]. The root of this tree is hashed togetherwith the previous \interval hash" to produce the current in-terval hash, which is placed in a widely available repository.The server then returns to each requester a time-stamp cer-ti�cate consisting of the time at which the interval ended,along with the list of sibling hash values along the path lead-ing from the requester's leaf up to the interval hash, eachone accompanied by a bit indicating whether it is the rightor the left sibling. The scheme also includes a validationprocedure, allowing a user to test whether a document hasbeen certi�ed in exactly its current form, by querying therepository for the appropriate interval hash, and comparingit against a hash value appropriately recomputed from thedocument and its certi�cate.It is noteworthy that the trustworthiness of the certi�-cates computed in this scheme depends only on the integrityof the repository, and not (for example) on trusting that aparticular private key has not been compromised or thata particular party's computation has been performed cor-rectly.3 A naming scheme for bit-stringsNext we describe a naming scheme for a network that in-cludes a server S and a repository R. Many executions ofN and of V may be performed concurrently in the network.We assume that there exists a family fHkgk of collision-freehash functions. Given an initial choice of security param-eter k, S announces to all parties its random choice of aone-way hash function h 2 Hk. Our scheme is a variationon the time-stamping scheme described in x2.4 above, with3

S playing the role of the coordinating server that computescerti�cates in response to requests and makes additions tothe repository R.We abbreviate a bit-string's certi�cate by omitting thelist of hash values, leaving only a pointer to the relevantinterval hash (for example, the time at which it was com-puted), and an encoding of the position of the request inthe tree for that interval (for example, the sequence of leftor right bits). It is this abbreviation that we propose to useas the name of the bit-string.More explicitly, an invocation of N on input x beginswith the computation of y = h(x), and the submission of yto S, which includes y as one of the leaves of the tree beingbuilt in the current time interval. At the end of the interval,having built a tree of height l (that includes the previousinterval hash), S places the root of the tree in R as thecurrent interval hash with label t, say. S responds to the re-quest by returning the certi�cate c = [t; (z1; b1); : : : ; (zl; bl)],where each bi = L or R. Finally, the name returned by Nfor argument x is n = [t; b1; : : : ; bl].One uses the entire certi�cate in order to validate thata particular string correctly names a particular bit-stringdocument, �rst by checking that the putative name was cor-rectly extracted from the certi�cate, and then by followingthe usual validation procedure for the document-certi�catepair (recomputing the path from the leaf to the root of thetree).To be precise, V operates as follows, given as inputs adocument x, a name n = [t; b1; : : : ; bl], and a certi�cate c =[t0; (z1; b01); : : : ; (zl; b0l)]: First, V checks that t = t0 and thateach bi = b0i. Next, V computes y1 h(x) and then (fori 1 : : : l) if bi = L then yi+1 h(zi � yi) else if bi = Rthen yi+1 h(yi � zi). Finally, V queries R for the hashvalue stored at location t, and checks that it is identical toyl+1. V accepts if all these checks are satis�ed and rejectsotherwise.Figure 1 below illustrates the tree built by S for a timeinterval during which it received eight requests, containingthe eight hash values a; b; c; d; e; f; g; and h. In this diagram,ab is the hash of the concatenation of a and b, etc., and IHtand IHt�1 are the respective interval hashes for the currentand the previous intervals. The certi�cate computed by Sfor the third request (the one containing hash value c), forexample, is the following:[t; (d;R); (ab; L); (eh;R); (IHt�1;L)]:3.1 SecurityThe security of this naming scheme follows directly from theinfeasibility of computing hash collisions for functions fromfHkgk, since the only possible counterfeit names includehash collisions. In essence, if x is a bit-string on whichN was never invoked during a run, any triple (x; n; c) thatV will accept (after the correct response to a query to R)will include a hash collision for the function h announced byS at the beginning of the run: either x itself or one of thehash values zi in c (when combined on the left or the rightwith yi) collides with another argument to h whose hashvalue was computed during the run. Therefore we have thefollowing theorem.Theorem 1 If fHkgk is a family of collision-free hash func-tions, then the naming scheme [N;V; S] described above issecure.Because the reduction in the proof is so direct, it is easyto give an \exact security" analysis (cf. [Lev 85, BKR 94]) of

the strength of this scheme, whether the hash functions usedare from the collision-free family provided by a theoreticalcryptographic assumption or rather practical hash functions,as in the implementations described in x6 below.3.2 Variations on the schemeOf course, the secure veri�ability of the names assigned bythe scheme described above does not depend on the partic-ular combination of binary trees and linked lists used. Bysystematically invoking the hash function on pairs or or-dered lists of hash values, new hash values can be computedfrom old ones so as to form a directed acyclic graph (by di-recting an edge from each of the inputs to the hash valueoutput). Design considerations (including those discussedin x6.1 below) may dictate several di�erent combinatorialstructures for this directed graph.Whatever the structure of the growing graph of hashvalues, it is secured by making portions of the graph widelywitnessed and widely available. To insure the veri�abilityof the names, it su�ces that every document in the namingstructure be linked by a directed path to a widely witnessedhash value; a standard ordering of the incoming edges ateach node can be used to encode the path. Then the nameof a document is given by this encoding of its location in thegraph, together with a pointer to the hash value at the endof the path, and the argument of Theorem 1 applies.For example, in one variation of the scheme describedabove, a list of documents may be used to build a local tree(following Merkle, again), whose root is sent o� in turn as arequest to the coordinating server. The location informationfor a document in this \tree-of-trees" scheme can be writtenas a position in the server's tree followed by a position inthe local tree.In another variation, the widely witnessed hash valuesin the repository could consist simply of a linked list (asin the simple linking scheme of [HS 91]). In this case thelocation information for a document is a simple pointer intothe repository.4 ApplicationsThe problem of naming digital documents might have seemedlike a curiosity only a few years ago. However, with thegrowth in use of the Internet, more and more people need tobe able to refer con�dently to meaningful bit-sequences. Theproblem is now a matter of immediate practical concern.The problem has become especially acute with the emer-gence of the World-Wide Web. Jumping from one URL(Uniform Resource Locator) to the next in a sequence ofWWW documents may seem at �rst to be exactly analo-gous to following a bibliographic reference in a traditionalscholarly paper. In fact it is something quite di�erent: aURL is only a pointer to a location, with no guarantee thatwhat a user �nds there today is the same reference thatthe author originally intended. If on-line citations includesecure names for the bit-string contents of the documentscited, then it is possible to traverse a path of citations withcon�dence that one is indeed following the authors' inten-tions. This ability would be especially useful for the manydocuments on the World-Wide Web that exist only on-line.In most electronic commerce systems, transaction recordsof all sorts are kept on-line, and it would be useful to have acryptographically secure means of assigning serial numbersor tracking numbers to these records.4

������BBBBBB������BBBBBB ������BBBBBB ������BBBBBB

JJJJJJ

JJJJJJ��������ZZZZZZZZ
������������������������������

e f g hab cd ef ghad ehah
IHtIHt-1

a b c d Figure 1: 8-leaf tree for the example of x3.
5

Software code is another class of digital document forwhich it would be useful to have an easy way for a shortname to carry a guarantee of integrity. A user who down-loads software (along with its naming certi�cate) from a siteon the Net can be sure of its integrity if he or she is able tocheck that the code is correctly named by a short string ofletters and numbers. Here, of course, bit-string equality isexactly the point. The great strength of using secure namesin this application is that the short name of a program isconsiderably easier to distribute widely and robustly thanthe program itself. (It is also easier to distribute reliablythan the sort of public-key infrastructure information thatis required in order to use digital signatures in order to val-idate the integrity of code.)For another example of a type of large digital documentwhose integrity matters a great deal, consider the case of ge-netic data. Scientists now routinely download others' datasets for use in their own research. The use of our namingscheme would allow the user to be sure of the data's in-tegrity, as well as providing a convenient and veri�able wayto cite the data in published descriptions of the work thatwas done with it.5 Long-lived namesThe technique described in [BHS 93] for renewing crypto-graphic certi�cations of authenticity applies directly to thecerti�cates of the present naming scheme.The renewing process works as follows. Let us supposethat an implementation of a particular time-stamping sys-tem is in place, and consider the pair (x;C), where C is avalid time-stamp certi�cate (in this implementation) for thebit-string x. Now suppose that an improved time-stampingsystem is implemented and put into practice|by replacingthe hash function used in the original system with a newhash function, or even perhaps after the invention of a com-pletely new algorithm. Further suppose that the pair (x;C)is time-stamped by the new system, resulting in a new cer-ti�cate C 0, and that some time later, i.e. at a de�nite laterdate, the original method is compromised. C 0 provides evi-dence not only that the document contents x existed priorto the time of the new time-stamp, but that it existed at thetime stated in the original certi�cate, C; prior to the com-promise of the old implementation, the only way to create acerti�cate was by legitimate means. (It is similarly recom-mended that if a digitally signed document is likely to beimportant for a long time|perhaps longer than the signer'skey will be valid|then the document-signature pair shouldbe time-stamped [BHS 93, Odl 95, HKS 95].)In our naming schemes, the veri�able name for the bit-string x is a standard abbreviation a for its original certi�-cate C. In order that a continue to be veri�able as a name forx, the certi�cate C should be renewed (as above) from timeto time as new time-stamping systems are put in place. Aslong as this is done, a is still a veri�able name for x. Thereis now an additional step to the procedure for validating thename: after checking that a is correctly extracted from C,one must follow the usual time-stamp validation procedurefor the certi�cate, which now includes both the original-system validation of (x;C) and the new-system validationof [(x;C); C 0]. We note that in practice this additional vali-dation step would be automated, and would not at all a�ectthe convenient use of a to name x.

6 Practical implementationsA practical implementation of a naming scheme cannot usethe known theoretical constructions of collision-free hashfunctions. If the decision is made to use practical one-wayhash functions such as MD5, then users of the system donot need to trust the server's random choice of a functionh 2 Hk. (However, they do have to hope that the hashfunction chosen is one-way in practice; see section x5 for oneway to allay users' concerns on this score.)The naming scheme described in x3 above, based on thedigital time-stamping scheme described in x2.4, was imple-mented by Surety Technologies, and has been in continuouscommercial use since January 1995. The implementationuses practical hash functions; speci�cally, the current im-plementation uses h(x) = (MD5(x);SHA(x)) as the hashvalue for any argument x. A number of supplemental mech-anisms are employed in order to maintain the integrity andwide distribution of the repository [Sur 95].The names assigned by our scheme are indeed concise,growing essentially as slowly as possible while still providingunique names. If the repository contains n interval hashes,and no more than m naming requests are received duringeach interval, the names can be written with at most lg2 nmbits. Just to give a numerical example, a repository repre-senting a thousand requests per minute for the length of acentury requires 36-bit names; in the MIME encoding (sixbits per alphanumeric character) such a name can be jotteddown with six characters, while hash-value names of thislength are completely insecure.6.1 Meaningful namesThere are several variations of our naming scheme that allowan author a fair measure of control over the names of his orher documents, so that the author can choose a veri�ablename that is meaningful in one or another useful way.First, and most obviously, observe that in the schemedescribed in detail in x3 a convenient way to encode thelocation in the repository to which a document's contentsare linked is by the date and time at which the intervalhash at that location was computed. Instead of (e.g.) aMIME encoding of the number of seconds since a momentin early 1970 (Unix standard time), it would often be usefulto express at least a part of this date and time in human-readable form.In a slight variation, we can allow \personalized" namingrequests, as follows. Suppose that the repository items areformatted in a standard way every day, and let F (�) denoteany standard mapping from ASCII-encoded strings to thelist of daily repository locations. When the server receives apersonalized naming request that includes the ASCII strings, the request is held until the appropriate moment in theday and then linked to the widely witnessed hash valuestored at location F (s); in this way, s is made to be part ofthe name of the documents included in those special nam-ing requests. Thus, for example, the author of The Historyof Computers in Zurich can arrange for the veri�able nameof its bit-string contents to have the form [\The History ofComputers in Zurich" date suffix], where suffix includesa few bits of disambiguating information that distinguishesthis request from all others that were linked to the samerepository location.In another example, consider the tree-of-trees variationbrie
y mentioned in x3.2. An author can name a multi-partdocument by placing the contents of each successive part at6

consecutive leaf nodes of a local tree. The resulting requestto the server gives the consecutive parts of the documentconsecutive local positions and therefore consecutive names.Furthermore, the other portions of these consecutive namesare identical, explicitly encoding the fact that they are partsof the same document. And local trees can have sub-trees, sothat our historian can arrange to name the ith section of thejth chapter of his masterpiece [\The History of Computersin Zurich" infix i:j], for all appropriate pairs (i; j).More complicated ways of structuring the parts of a doc-ument can similarly be encoded in the veri�able names as-signed by our naming scheme. Note that conventional nam-ing schemes do allow for encoding document structure intonames, but not in a veri�able manner.In another variation, a table of contents for a long orcomplicated multi-part document can be included in a stan-dard place in the request|for example, as its last piece. Thetable of contents may contain more or less detailed descrip-tions of the parts of the document. At a later time, togetherwith a list of documents to be authenticated and their cer-ti�cates, such an authenticated table of contents can be usedto verify (1) that each document in the list is an exact copyof one that was registered with the table of contents, and(2) that none of the documents in the list are missing.AcknowledgementsWe would like to thank Ralph Merkle, R. Venkatesan, MattFranklin, Avi Rubin, Bill Arms, and Dave Richards for help-ful discussions about this work. We would also like to thankthe anonymous referees for their very useful suggestions.References[BHS 93] D. Bayer, S. Haber, and W.S. Stornetta. Im-proving the e�ciency and reliability of digi-tal time-stamping. In Sequences II: Methods inCommunication, Security, and Computer Sci-ence, ed. R.M. Capocelli, A. De Santis, U. Vac-caro, pp. 329{334, Springer-Verlag, New York(1993).[BKR 94] M. Bellare, J. Kilian, and P. Rogaway. Thesecurity of cipher block chaining. In Advancesin Cryptology|Crypto '94, Lecture Notes inComputer Science, Vol. 839, ed. Y. Desmedt,pp. 94-107, Springer-Verlag (1994).[BY 90] G. Brassard and M. Yung. One-way group ac-tions. In Advances in Cryptology|Crypto '90,Lecture Notes in Computer Science, Vol. 537,pp. 94-107, Springer-Verlag (1991).[BD+ 95] S. Browne, J. Dongarra, S. Green, K. Moore,T. Pepin, T. Rowan, and R. Wade. Location-independent naming for virtual distributedsoftware repositories. Univeristy of TennesseeComputer Science TR 95-278 (1995). (Avail-able at http://www.cs.utk.edu/�library/TechReports/1995/).[Dam 87] I. Damg�ard. Collision-free hash functions andpublic-key signature schemes. In Advances inCryptology|Eurocrypt '87, Lecture Notes inComputer Science, Vol. 304, pp. 203{217,Springer-Verlag (Berlin, 1988).

[Dob 96a] H. Dobbertin. Cryptanalysis of MD4. In FastSoftware Encryption, Lecture Notes in Com-puter Science, Vol. 1039, ed. D. Gollman,pp. 53{69, Springer-Verlag (Berlin, 1996).[Dob 96b] H. Dobbertin. Cryptanalysis of MD5 com-press. Private communication (May 1996).Described by B. Preneel, Rump Session, Eu-rocrypt '96 (May 1996).[Dob 96c] H. Dobbertin. The status of MD5 after a re-cent attack.CrytoBytes, Vol. 2, No. 2 (Summer1996).[DBP 96] H. Dobbertin, A. Bosselaers, and B. Pre-neel. RIPEMD-160: A strengthened version ofRIPEMD. In Fast Software Encryption, Lec-ture Notes in Computer Science, Vol. 1039,ed. D. Gollman, pp. 71{82, Springer-Verlag(Berlin, 1996).[HKS 95] S. Haber, B. Kaliski, and W.S. Stornetta. Howdo digital time-stamps support digital signa-tures? CryptoBytes, Vol. 1, No. 3 (Autumn1995). (Available at http://www.rsa.com/rsalabs/pubs/cryptobytes.html.)[HS 91] S. Haber and W.S. Stornetta. How to time-stamp a digital document. Journal of Cryptol-ogy, Vol. 3, No. 2, pp. 99{111 (1991).[KW 95] R. Kahn and R. Wilensky. A framework fordistributed digital object services. Corporationfor National Research Initiatives technical re-port cnri.dlib/tn95-01 (May 1995). (Availableat http://www.cnri.reston.va.us/.)[Lev 85] L.A. Levin. One-way functions and pseudo-random generators. In Proceedings of the 17thAnnual Symposium on Theory of Computing,pp. 363-365, ACM (1987).[Merk 80] R.C. Merkle. Protocols for public key cryp-tosystems. In Proc. 1980 Symposium on Se-curity and Privacy, IEEE Computer Society,pp. 122{133 (April 1980).[M 94] J.W. Moore. The use of encryption to en-sure the integrity of reusable software com-ponents. In Proc. 3rd International Conf. onSoftware Reusability, IEEE Computer SocietyPress (November 1994).[NIST 94] National Institute of Standards and Tech-nology. Secure Hash Standard. NIST FederalInformation Processing Standard Publication180-1 (May 1994).[Odl 95] A. Odlyzko. The future of integer factoriza-tion. CrytoBytes, Vol. 1, No. 2 (1995).[Pre 93] B. Preneel. Analysis and Design of Cryp-tographic Hash Functions. Ph.D. disserta-tion, Katholieke Universiteit Leuven (January1993).[Riv 92] R. Rivest. The MD5 Message-Digest Algo-rithm. Internet Network Working Group Re-quest for Comments 1321 (April 1992).7

[R 95] A. Rubin. Trusted distribution of software overthe Internet. In Internet Society 1995 Sympo-sium on Network and Distributed System Se-curity (1995).[SM 94] K. Sollins and L. Masinter. Functional require-ments for Uniform Resource Names. InternetNetwork Working Group Request for Com-ments 1737 (December 1994).[Sur 95] Surety Technologies, Inc. Answers to Fre-quently Asked Questions about the DigitalNotaryTM System. http://www.surety.com(since January 1995).

8

